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Basic model

=
S
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vt:—dbv+u2w—dv, (RD)
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for x € (0,1), t > 0 with the homogeneous Neumann boundary conditions for
the function w = w(x, t)

wy(0,t) = wi(1,t) =0 forall t>0,
and with positive initial conditions

u(x,0) = wo(x), v(x,0)=w(x), w(x,0)= w(x).



Biological system

Surface concentrations:

growth factor
molecules

cells

> Cell proliferation (e.g. in lungs) is influenced by growth factor
» Growth factor is externally supplied or produced by the cells

» Growth factor diffuses along the structure formed by the cells and
binds to cell membrane receptors

» Hypothesis: The diffusion of this growth factor may significantly
influence the dynamics of the whole cell population



Spatial profiles of the solutions




Kinetic system. Boundedness of solutions

> Solutions are nonnegative and uniformly bounded (change of variables
(u, 3, uw)).
> The trivial steady state (To, Vo, Wo) = (O, 0, ’;—:) is locally asymptotically
stable.
d?(dp+d
> Assume a > d. and k2 > ©, where © = 4dgdb%. Then, the
a— dc
kinetic system has two positive constant stationary solutions
(Ui,Vi,Wi), where
kot K3 —0© _  d(dpy+d) 1 _  a—d._
= Vi= " —, U4t = Vi.
2d, T G—d? we T T4
» (u—_,v_,w_) is stable, and (U4, V4, W) is unstable.



Model with diffusion. Boundedness of mass

Theorem
Let ko > 0. The solution (u, v, w) of (RD) satisfies

Ko
pde ’

1
lim sup/ u(x,t) dx <
0

t—o0

1
lim sup/ v(x,t) dx < @,
0 M

t—o0

. Cd 1
limsup [|w(t)||s < ko —7 4+ 1.
t—oo /-'Ldg dg

Here v = min{d,, d»} > 0.



Stationary problem

aVv
_dC =0,
(v ) v=o
—dyV + UPW — dV =0,

%Wxx—di—UQW—i—dV—i—mo:O

and the boundary condition W, (0) = Wi (1) = 0.
> We are interested only in U(x) > 0 and V(x) > 0,
> Let a> d.,
> We obtain

2
2= () and V(x) = Feldetd) 1

Ulx) == T (a—do)? W(x)

(4)



Two-point boundary value problem

The boundary value problem for W(x)

1

2
;W”*dgwfdbdc(db—’_d) 1

a—dy w =0

Wi (0) = Wi(1) = 0.
We find explicit 7o such that

» for all v € (0,70], the above problem has only constant solutions,

» for all v > o, we describe all positive solutions of the problem.



Construction of patterns

Definition
Let k € N and k > 2. We call a function W € C([0, 1]) a periodic function on

[0,1] with k modes if W = W(x) is monotone on [0, ] and if

{W(x—i") o xe [422)

W(x) = . .
W32 —x)  for xe [F7, %]

for every j € {0,1,2,3,...} such that 2j +2 < k.

JImodes



Instability of patterns

Let W(x) be one of the functions from the previous theorem, and
(U(x), V(x), W(x)) be a stationary solution of our system, where

a—d _ di(dh+d) 1
V) === V(¥ and V) =" Wiy

This stationary solution appears to be unstable solution of the
reaction-diffusion equations (RD).



Instability of patterns

Let W(x) be one of the functions from the previous theorem, and
(U(x), V(x), W(x)) be a stationary solution of our system, where

a—d _ di(dh+d) 1
V) === V) and V) =005 Wiy

This stationary solution appears to be unstable solution of the
reaction-diffusion equations (RD).

Let us be more precise.



Instability of patterns

Linearized operator
The linearization of system (RD) at the steady state (U, V, W)

00 O
L= 0 0 0 + A(x).
00 ;aﬁ

We consider £ as an operator in the Hilbert space
H=1°(0,1) @ L*(0,1) & L*(0,1)
with the domain

D(L£) = L*(0,1) @ L*(0,1) & W>?(0,1).

L has infinitely many positive eigenvalues.



Instability of patterns

Spectrum of L
Together with the matrix

(g 1) e
2
A(x) = (aj)ij=123 = 2K —dp —d W)
2
—2K d g s

we consider its sub-matrix
_ a1l 412
A = .
a1 ax
Lemma

Let \ be an eigenvalue of the matrix A1>. Then A belongs to the
continuous spectrum of the operator L.



Instability of patterns

Spectrum of L
Together with the matrix

(g 1) e
2
A(x) = (aj)ij=123 = 2K —dp —d W
2
—2K d g s

we consider its sub-matrix
_ a1l 412
A = .
a1 ax
Lemma

Let \ be an eigenvalue of the matrix A1>. Then A belongs to the
continuous spectrum of the operator L.

The matrix Aj, has a positive eigenvalue \g.



Instability of patterns

Spectrum of L - the crucial lemma

Lemma
A complex number X is an eigenvalue of the operator L if and only if the following
two conditions are satisfied

» )\ is not an eigenvalue of the matrix Ajp,
» the boundary value problem has a nontrivial solution:
1 det(A — A
" anoy x € (0,1)
¥ det(A12 — M)
n'(0) =7'(1) =0.

Proof. Study the system

(a1 =Ny + a2t = 0
ap + (am— Ay + asn = 0
%6377 + a1p + a3y + (asz—A)p = 0O,

supplemented with the boundary condition 7,(0) = 7x(1) =0



Instability of patterns

Spectrum of £ - main result

Theorem
Denote by Ao the positive eigenvalue of the matrix Aj>. There exists a sequence
{An}nen of positive eigenvalues of the operator L that satisfy A\n — Ao as n — co.

Recall that )y belongs to the continuous spectrum of the operator L.

Idea of the proof. Analysis of solutions of the generalized Sturm-Liouville problem
1 " _
;77 +q(X7)‘)77707 RS (Oal)

7'(0) =7'(1) =0,
where
det(A(x) — Al)

) = .
906N = et =)



Existence of discontinuous patterns

aVv
_dC =0,
(2 -a) =0 ®
—dpV + UPW —dV =0, (6)
%Wxx—di—UQW—i—dV—i—mo:O (7)

Theorem
Assume that a > d. and k3 > ©. There exists a continuum of weak solutions
of the stationary system with some ~y > 0. Each such solution
(U, V, W) € L>=(0,1) x L>=(0,1) x C*([0,1]) has the following property: there
exists a sequence 0 = xp < x1 < x2 < ... < xy = 1 such that for each
k € {0, N — 1} either

> for all x € (xk, xk+1), U(x) = V(x) = 0 and W(x) satisfies

%W” —dgW + ko =0,

or

> for all x € (xk,xk+1), U(x) >0, V(x) > 0 and W are solutions of the
stationary equation.



Instability of discontinuous stationary solutions

Theorem

Every discontinuous weak stationary solution (Uz, Vz, Wz) with a null set

Z C [0,1], is an unstable solution of the nonlinear system considered in the
Hilbert space Hz.

» For a null set Z, we define the associate L?-space
1%(0,1) = {v € L*(0,1) : v(x)=0 on Z},

supplemented with the usual L%-scalar product, which is a Hilbert space as
the closed subspace of L2(0,1).

> If uo(x) = vo(x) = 0 for some x € [0, 1] then u(x,t) = v(x,t) =0 for all

t > 0. Hence, the space Hz = L%(0,1) x L%(0,1) x L?(0,1) is invariant
for the flow generated by the system.



Main result:

instability of ALL
stationary solutions

A.M-C, G.K., K.S., J.Math.Pures et Appl., 2013



Reaction-diffusion-ODE
system

(A. Marciniak-Czochra, G.K., K. Suzuki)



The point of departure:
a general system of reaction-diffusion (reaction-diffusion-ODE) equations:

up = f(u,v), for xeQ, t>0
ve = DAv + g(u, v) for xeQ, t>0

in a bounded domain Q C R".
The Neumann boundary condition:

Op,v=0 for x€0Q,t>0

Initial data:
u(x,0) = up(x), v(x,0) = v(x).

» D > 0 — a constant diffusion coefficient. (We can set D =1.)
» arbitrary C!-nonlinearities f = f(u,v) and g = g(u, v).



Constant stationary solutions — Turing instability

uy = f(u, v),

vi = Av+g(u,v)

v =0 x€e0, t>0
u(x, 0) = up(x),

v(x,0) = v(x).

Theorem
Assume that the constant vector (i, V) is a (stationary) solution of the
initial-boundary value problem for this ordinary-PDE system. If

fu(a,v) >0,

then (&, v) is an unstable solution of this problem.

Remark.
Autocatalysis leads to the instability of stationary solutions.



Regular stationary solutions — standing assumption

We consider only regular stationary solutions, namely, we assume, that
we can solve the equation

to have

for a Cl-function k = k(V).

Under this assumption, regular stationary solutions of

f(u,v) =0,
Av+g(u,v)=0
Ohv =0 x € 092

satify the boundary value problem

AV 4+ h(V) =0, where  h(V) = g(k(V), V),
0,V =0 on 0Q.



Non-constant stationary solutions

Theorem (Instability of solutions)
Let (U, V) be a regular stationary solution satisfying the autocatalysis

assumption B
fu(U(x), V(x)) >0 forall x € Q.

Then, (U, V) is an unstable solution.

The same mechanism which destabilizes constant
solutions of such models, destabilizes also non-constant
solutions.

A.M-C, G.K., K.S., J. Math. Biology., 2017



Example:
The Gray-Scott model

We consider positive solutions of the system

ut:—u—i—uzv7
vi=Av —v—uPv+2,
Opv = 0.

Regular stationary solutions satisfy
u=1/v.
Autocatalysis assumption:

f,(U,V) = —14+20V =1> 0.



Example:
Activator-inhibitor system with no diffusion of activator

We consider positive solutions of the system

Onv =0,
where p > 1.
Regular stationary solutions satisfy
U = va/(p—1)
Autocatalysis assumption:
p—1

=—-1+p>0.

U
fu(U, V) =-1 +P Va



Example: Model of an early carcinogenesis

We consider positive solutions of the system

av
up = (u—i—v_dc) u,

wt:AW—dgw—u2w—|—dv—|—m07
Oaw =0,

where
—dpv + Pw — dv = 0.

Here, the autocatalysis assumption is satisfied, by a simple calculation.



Linearization of reaction-diffusion-ODE problems.

Let (U, V) be a stationary solution of the system
uy = f(u,v), for x€Q,t>0

vi = DAv + g(u,v) for xeQ.t>0

Substituting
u=U+u and v=V+v

into the equations we obtain the problem for (u, v) of the form

il(v)=e(2)(5)

with the Neumann boundary condition, 9, v = 0.



Lemma
We consider the following linear system

(5)=2(9)=( &)+ (250 HG)(

with the Neumann boundary condition 0,v = 0.

<t =R
——

Then, the operator L with the domain D(L) = L?(Q) x W?2(Q)
generates an analytic semigroup {etﬁ}tzo of linear operators on
L2(Q) x L2(Q).

This semigroup satisfies “the spectral mapping theorem”:

a(e)\ {0} = et for every t > 0.



Spectrum of £

Define the constants

Ao = inf £,(U(x), V(x)) >0 and Ao = sup f,(U(x), V(x)) >0,
x€N
The spectrum o (L) of the linear operator

x€Q
r _ 0 n (U, v) f(U,V)
—\ Av g(U,V) g/(U,V)
with the domain D(£) = L?(Q) x W?2(Q) looks as on the picture.

\ c
s

«o spectral gap

=R

<=
<




Turing mechanism in reaction-diffusion-ODE
problems not only destabilizes all steady
states, but it may induces a blowup of
solutions.



Model problem

up = dAu — au + uPf(v),
ve = DAv — bv — uPf(v) + &

in a bounded domain Q C R".
» f € CY([0,0)) is an arbitrary function satisfying f(v) > 0 for v > 0.
» Fixed parameters:
d>0, D>0, p>1, a,be0,00), k€]0,00).
» The homogeneous Neumann boundary conditions:

Ou . ov
%:O(Ifd>0) and %_O for x€0Q, t>0, (8)

» Bounded, nonnegative, and continuous initial data

u(x,0) = up(x), v(x,0) = v(x) for xeq.



Main results

ur = dAu — au + uPf(v),
ve = DAv — bv — uPf(v) + K

» Ford >0and D > 0,
all nonnegative solutions to the problem are global-in-time.



Main results

ur = dAu — au + uPf(v),
ve = DAv — bv — uPf(v) + K

» Ford >0and D > 0,
all nonnegative solutions to the problem are global-in-time.

» Ifd=0and D >0,
there are solutions to this problem which blowup in a finite time
and at one point only.



Theorem
There exist numbers o € (0,1), >0, Ry > 0 such that if

_ 1
0 < wp(x) < (uo(O)lf” + 2€*(p*1)|x|a) U forall xeQ

1

a p-1
>(—° —
up(0) > <(1 — e(l_p)a)/__0> , where  Fy vlgli;o f(v),
v(x) =% >R >0 for all x € Q,

then the corresponding solution to the initial-boundary problem for
system

up = —au+ uPf(v), vi=DAv—bv—uPf(v)+k
blows up at certain time T < 1.
Moreover,

0 <u(x,t) <elx| 771 and v(x,t)> Ry for all  (x,t) € QX[0, Tmax)-



Diffusion induced blowup

Solutions to the following system of ordinary differential equations:

Eﬁz—au—i—ﬁpf(V), %V:—b?—ﬁpf(v)—kn,
a(0) = gp > 0, v(0)=v >0

are global-in-time and bounded on [0, o0).
By our theorem, there are nonconstant initial conditions such that
solutions to

up = —au+ uPf(v), v =DAv—bv—uPf(v)+k

blows up at one point in a finite time.



Blowup and control of mass

Total mass

/Q (u(x, t) + v(x, 1)) dx
of any nonnegative solution to
up = —au+ uPf(v), vi=DAv—bv—uPf(v)+k
does not blow up and u(t), v(t) stay bounded in L}(2) uniformly in time.

We showed this a priori estimate is not sufficient to prevent the blowup
of solutions in a finite time.



One point blowup




Two point blowup







