How to Cope with

the Curse of Dimensionality ?

Henryk Woźniakowski

University of Warsaw and Columbia University

Curse of Dimensionality


```
the minimal cost
```

Many problems suffer from the curse of dimensionality

$$n(\varepsilon, d) \ge c (1+C)^d$$

for all $d = 1, 2, \ldots$ with c > 0 and C > 0.

IBC
IBC = Information-Based Complexity
 IBC is the branch of computational complexity that studies continuous mathematical problems.
• Typically, such problems are defined on spaces of functions of d variables. Often d is large.
 Typically, the available information is given by finitely many function values. Therefore it is partial, costly and often noisy.

Multivariate Integration for Korobov Spaces

$$r = \{r_j\}$$
 with $1 \le r_1 \le r_2 \le \cdots$

$$H_{r_j}$$
: 1-periodic $f:[0,1] \to \mathbb{C}$, $f^{(r_j-1)}$ abs. cont, $f^{(r_j)} \in L_2$

$$||f||_{H_{r_j}}^2 = \left| \int_0^1 f(t) \, \mathrm{d}t \right|^2 + \left| \int_0^1 \left| f^{(r_j)}(t) \right|^2 \, \mathrm{d}t \right|^2$$

For $d \ge 1$,

$$H_{d,r} = H_{r_1} \otimes H_{r_2} \otimes \cdots \otimes H_{r_d}$$

Usually, it is assumed that $r_j \equiv r$

Multivariate Integration

For $f \in H_{d,r}$ we want to approximate

$$I_d(f) := \int_{[0,1]^d} f(t) \,\mathrm{d}t \qquad \approx \quad A_n(f)$$

• Algorithms:

$$A_n(f) = \phi_n(f(x_1), f(x_2), \dots, f(x_n))$$
 with $x_j \in [0, 1]^d$

• Minimal Worst Case Error:

$$e(n,d) = \inf_{A_n} \sup_{\|f\|_{H_{d,r}} \le 1} |I_d(f) - A_n(f)|$$

• Information Worst Case Complexity:

$$n(\varepsilon, d) = \min\{n \mid e(n, d) \le \varepsilon\}$$

Theorem

Let $r_j \equiv r$. Then there exists $c_r > 0$ and $C_r > 0$ such that

 $n(\varepsilon, d) > c_r \left(1 + C_r\right)^d$

Based on Hickernell+W [2001] and Novak+W[2001], see also Sloan+W[2001]

Multivariate integration for Korobov space with arbitrarily smooth functions suffers from the curse of dimensionality

Still the worst case setting and unweighted spaces with $r_1 \leq r_2 \leq \cdots$.

But we now allow to increase r_i

Let

Theorem

If $R < 2 \ln 2\pi$ then

• no curse

• $n(\varepsilon, d) \leq C \varepsilon^{-p(1+p/2)}$ with $p := \max(r_1^{-1}, R/\ln 2\pi) < 2$, i.e., strong polynomial tractability

Based on Papageorgiou+W [09], Kuo, Wasilkowski+W[09]

Weighted Spaces

Major research activities in last 20 years...

In particular, for $r_j \equiv r$ and $\gamma = \{\gamma_j\}$, redefine H_{r_j,γ_j} with

$$\|f\|_{H_{r_j,\gamma_j}}^2 = \left\|\int_0^1 f(t) \,\mathrm{d}t\right\|^2 + \frac{1}{\gamma_j} \int_0^1 \left|f^{(r_j)}(t)\right|^2 \,\mathrm{d}t$$

For $d \ge 1$,

$$H_{d,r} = H_{r_1,\gamma_1} \otimes H_{r_2,\gamma_2} \otimes \cdots \otimes H_{r_d,\gamma_d}$$

Theorem

• Gnewuch+W[08]

$$\lim_{d\to\infty}\frac{\sum_{j=1}^d \gamma_j}{d} = 0$$
 iff no curse,

• Hickernell+W[01]

 $\limsup_{d\to\infty} \frac{\sum_{j=1}^d \gamma_j}{\ln d} < \infty \quad \text{iff} \quad \text{polynomial tractability,}$ i.e., $n(\varepsilon, d) \le C d^q \varepsilon^{-p}$

• Hickernell+W[01]

 $\sum_{j=1}^{\infty} \gamma_j < \infty \quad \text{iff} \quad \text{strong polynomial tractability,}$ i.e., $n(\varepsilon, d) \le C \varepsilon^{-p}$

More Lenient Settings

From Worst Case Setting to

- Randomized Setting
- Average Case Setting

Average Case Setting \leq Randomized Setting

Randomized Setting

• Algorithms:

 $A_{n,\omega}(f) = \phi_{n,\omega}(f(x_{1,\omega}), f(x_{2,\omega}), \dots, f(x_{n(\omega),\omega})) \text{ for a random } \omega$

• Minimal Randomized Error:

$$e(n,d) = \inf_{A_n} \sup_{\|f\|_{H_{d,r}} \le 1} \left[\mathbb{E} |I_d(f) - A_{n,\omega}(f)|^2 \right]^{1/2}$$

• Information Randomized Complexity:

$$n(\varepsilon, d) = \min\{n \mid e(n, d) \le \varepsilon\}$$

Monte Carlo Algorithm

$$A_{n,\omega}(f) = \frac{1}{n} \sum_{j=1}^{n} f(x_{j,\omega})$$

with

 $x_{j,\omega}$ iid with uniform distribution over $[0,1]^d$

- $n(\varepsilon, d) \le \varepsilon^{-2}$
- no curse and strong polynomial tractability

Conclusions

- Many multivariate problems suffer from the curse of dimensionality in the worst case setting
- We may sometimes break the curse of dimensionality by
 - switching to spaces with increased smoothness
 with respect to successive variables
 - switching to weighted spaces, i.e., groups of variables are of varying importance
 - switching to a more lenient setting, i.e, from the worst case setting to the randomized or average case setting

