
Dynamical bifurcations and singularly perturbed

systems of differential equations

Jacek Banasiak

Konferencja ,,XXX Lat Instytutu Matematyki Stosowanej i

Mechaniki Uniwersytetu Warszawskiego”

Jacek Banasiak Dynamical bifurcations and singularly perturbed systems of differential



Part I: Singular
Perturbations
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Motivating example – a dengue fever model.

Assumptions:

a) Host population: susceptible Sh, infectives Ih, recovered with

immunity Rh, Malthusian demography,

b) Vector population: susceptible Sv , infective Iv , balanced

population: Sv (t) + Iv (t) = M0,

c) Vector population smaller that the host population,

d) Non-lethal.
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Then

S ′

h = (Ψh − µ1h)Sh +ΨhIh + (Ψh + ρh)Rh − σvβhv
IvSh
Nh

,

I ′h = σvβhv
IvSh
Nh

− (γh + µ1h)Ih,

R ′

h = γhIh − (ρh + µ1h)Rh,

S ′

v = µ1vSv − σvβvh
IhSv
Nh

,

I ′v = −µ1v Iv + σvβvh
IhSv
Nh

. (1)

Jacek Banasiak Dynamical bifurcations and singularly perturbed systems of differential



Table: Parameter values

Parameters day−1 year−1

Ψh 7.666 × 10−5 2.8 × 10−2

γh 3.704 × 10−3 1.352 × 100

δh 3.454 × 10−4 1.261 × 10−1

ρh 1.460 × 10−2 5.33 × 100

µ1h 4.212 × 10−5 1.5 × 10−2

σv 0.6 2.19 × 102

µ1v 0.1429 5.2 × 101

Dimensionless parameters

βvh 0.8333

βhv 2× 10−2
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Problem: The original models are too complex for a robust

analysis and may yield redundant information for particular

applications.

Aim: to build a simpler (macro) model for the evolution of

macro-variables relevant for a chosen time scale which, for these

variables, retains the main features of the dynamics of the detailed

(micro) model. The process often is referred to as the aggregation,

or lumping, of states.
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Figure: Commutativity of the aggregation diagram
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Figure: Approximate commutativity of the aggregation diagram
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Tikhonov theorem — aggregation in systems of ODEs

We are concerned with models in which the existence of two

characteristic time scales leads to singularly perturbed systems

x′ = f(t, x, y, ǫ) , x(0) = x̊ ,

ǫy′ = g(t, x, y, ǫ) , y(0) = ẙ , (2)

where ′ denotes differentiation with respect to t and f and g are

sufficiently regular functions from open subsets of

R+ × R
n ×R

m × R+ to, respectively, Rn and R
m, for some

n,m ∈ N.
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Tikhonov theorem gives conditions ensuring that the solutions

(xǫ(t), yǫ(t)) of (2) converge to (x̄(t), ȳ(t, x̄)), where ȳ(t, x) is the

solution to the equation

0 = g(t, x, y, 0), (3)

called the quasi steady state, and x̄(t) is the solution of

x′ = f(t, x, ȳ(t, x), 0), x(0) =
◦

x, (4)

obtained from the first equation of (2) by substituting the

unknown y by the known quasi steady state ȳ.
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Main assumptions:

the quasi-steady states are isolated in some set [0,T ] × Ū ;

for each fixed t and x, the quasi steady state solution ȳ(t, x)

of (3) is an asymptotically stable equilibrium of

d ỹ

d τ
= g(t, x, ỹ, 0); (5)

x̄(t) ∈ U for t ∈ [0,T ] provided
◦

x ∈ Ū ;

◦

y belongs to the basin of attraction of ȳ(0,
◦

x).
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Then the following theorem is true.

Theorem

Let the above assumptions be satisfied. Then there exists ε0 > 0

such that for any ε ∈ ] 0, ε0] there exists a unique solution

(xε(t), yε(t)) of Problem (2) on [0,T ] and

lim
ε→0

xε(t) = x̄(t), t ∈ [0,T ] ,

lim
ε→0

yε(t) = ȳ(t), t ∈ ] 0,T ] , (6)

where x̄(t) is the solution of (4) and ȳ(t) = ȳ(t, x̄(t)) is the

solution of (3).
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Back to the model.

With ǫ = 1
1000 , (1) can be written as

S ′

h = 0.013Sh + 0.028Ih + 5.358Rh − 4.38
IvSh
Nh

,

I ′h = 4.38
IvSh
Nh

− 1.367Ih ,

R ′

h = 1.352Ih − 5.345Rh ,

ǫS ′

v = 0.052Sv − 0.182
IhSv
Nh

,

ǫI ′v = −0.052Iv + 0.182
IhSv
Nh

. (7)
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The Tikhonov theorem allows for the reduction of (1) to a SIR

system

S̄ ′

h = (Ψh − µ1h)S̄h +Ψh Īh + (Ψh + ρh)R̄h − λ(t)S̄h,

Ī ′h = λ(t)S̄h − (γh + µ1h)Īh,

R̄ ′

h = γh Īh − (ρh + µ1h)R̄h, (8)

with modified infection force

λ =
σvβhv

N̄h

Īv =
σvβhv

N̄h

σvβvhM0Īh

µ1v N̄h + σvβvh Īh
, (9)

where

N̄h(t) = Nh(0)e
(Ψh−µ1h)t .
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Part II: Dynamic
bifurcations
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In the classical bifurcation theory we consider the differential

equation

ẏ = g(x , y), (10)

where x is a parameter, and investigate the character of the

equilibrium y∗ = y∗(x); that is, the solution to

0 = g(x , y),

when x passes through some exceptional values, called the

bifurcation points.
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Figure: Dynamics described by Eqn (14) if g(x , y) = 0 is attractive.
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If we move x according to some rule τ → x(τ), then modified (14):

ẏ(τ) = g(x(τ), y(τ)), (11)

will generate a ‘long-term’ dynamics on the manifold g(x , y) = 0.
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Figure: Moving x generates a dynamics on the manifold g(x , y) = 0.
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In general, the bifurcation parameter can be coupled with the main

equation:

ẋ = ǫf(x, y),

ẏ = g(x, y). (12)

Changing time as ǫτ = t we obtain (2),

x′ = f(x, y),

ǫy′ = g(x, y); (13)

that is, a singularly perturbed system in the Tikhonov form.
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Hence, long term dynamics of (12) is equivalent to small ǫ

dynamics of (2). Both problems are equivalent for ǫ > 0. On the

other hand, we may ask how well the solutions of (14) and (15)

with ǫ = 0:

ẋ = 0,

ẏ = g(x, y), (14)

(fast dynamics) and

x′ = f(x, y),

0 = g(x, y), (15)

(slow dynamics) approximate the true solution?
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x̄(t)

x̊
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Figure: Dynamics described by Eqns (12) and (15) by the Tikhonov

theorem.
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Quite often, however, g(x , y) = 0 has branching solutions.

x

y

stable branch unstable branch

unstable branch

stable branch

xb

Figure: Transcritical bifurcation at the bifurcation point xb
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Figure: Hopf bifurcation at the bifurcation point xb
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Figure: Backward bifurcation at the bifurcation point xb
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By classical bifurcation theory, it is expected that the solutions to

(12) should converge to the equilibria y∗(x) of

y ′ = g(x , y)

whenever they are attracting. In terms of (15), the solutions yǫ(t)

should converge to the quasi steady states; that is, to solutions to

g(x , y) = 0,

whenever they are attracting.
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Figure: Expected behaviour of solutions in the case of transcritical

bifurcation.
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Delayed asymptotic switch.

An SIS model with demography for a quick disease often can be

reduced to

ǫi ′ǫ = −ǫµiǫ + (λiǫ(n − iǫ)− γiǫ),

iǫ(0) = i0, (16)

where iǫ is the density of infectives, µ is the death rate in the

population, λ is the force of infection, γ is the recovery rate and

n(t) = n0e
rt ,

where r > 0 is the net growth rate in the population.
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The quasistationary states of (16) are

φ1 = 0, φ2 = n0e
rt − ν,

where ν = γ/λ. They intersect at

tc =
1

r
log

( ν

n0

)

> 0. (17)

provided n0 < ν.
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Then

φ1 is attractive for 0 < t < tc i repelling for t > tc ;

φ2 is attractive for t > tc and negative (hence irrelevant) for

0 < t < tc).

t

i

stable branch of φ1 unstable branch of φ1

unstable branch of φ2

stable branch of φ2

tc

Figure: Geometry of the quasisteady states.
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Eqn (16) is the Bernoulli equation whose solution is

iǫ(t) =
i0e

1
ǫ
G(t,0)−µt

1 + λi0
ǫ

∫ t

0 e
1
ǫ
G(s,0)−µsds

, (18)

where

G (t, ǫ) =
n0λ

r
(ert − 1)− γt − ǫµt.

The limit of iǫ as ǫ → 0 depends on the sign of G (t, 0).
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ttc t∗

Figure: The shape of G(t, 0)

We have

G (t, 0) < 0 dla 0 < t < t∗;

G (t, 0) > 0 dla t < t∗.

Jacek Banasiak Dynamical bifurcations and singularly perturbed systems of differential



Then

0 ≤ lim
ǫ→0

iǫ(t) = lim
ǫ→0

i0e
1
ǫ
G(t,0)−µt

1 + λi0
ǫ

∫ t

0 e
1
ǫ
G(s,0)−µsds

≤ lim
ǫ→0

i0e
1
ǫ
G(t,0)−µt =0=φ1

fort ∈ (0, t∗), hence iǫ(t) is close to φ1 = 0 also for t ∈]tc , t
∗[,

when φ1 already is repelling.

Contrary to naive numerical simulations, t∗ does not depend on ǫ.
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Figure: Solutions for (16) using standard ODE solver in Python.
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Figure: Solutions for (16) using (18).
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Figure: Possible behaviour of solutions in the case of transcritical

bifurcation.
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Part III: Some
mathematics
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1-dimensional theory – the method of upper and lower

solutions (Butuzov 2004)

Let us consider a singularly perturbed scalar differential equation.

ǫ
dy

dt
= g(y , t, ǫ), t ∈ (0,T )

y(0, ǫ) = ẙ , (19)

Define

G (t, ǫ) =

∫ t

0
gy (0, s, ǫ)ds.
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(A1) g(y , t, 0) = 0 has two roots y = φ1(t) ≡ 0 and y = φ2(t),

which intersect at t = tc ∈ (0,T ). We assume that

φ2(t) < 0 for 0 ≤ t ≤ tc , φ2(t) > 0 for tc ≤ t ≤ T .

(A2) Stability of the quasi steady states: φ1(t) = 0 is attractive on

[0, tc ) and repelling on (tc ,T ] and φ2(t) is attractive on

(tc ,T ];

(A3) g(0, t, ǫ) ≡ 0 for (t, ǫ) ∈ ŪT × Īǫ0.

(A4) The equation G (t, 0) = 0 has a root t∗ ∈ (t0,T ).

(A5) There is a positive number c0 such that ±c0 ∈ Iy and

g(y , t, ǫ) ≤ gy (0, t, ǫ)y for t ∈ [0, t∗], |y | ≤ c0.
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Theorem

Let us assume that all assumptions (A1)− (A5) hold. If ẙ > 0 then

for sufficiently small ǫ there exists a unique solution y(t, ǫ) of (19)

that is positive and

lim
ǫ→0

y(t, ǫ) = 0 for t ∈ (t0, t
∗), (20)

lim
ǫ→0

y(t, ǫ) = φ2(t) for t ∈ (t∗,T ). (21)

If ẙ < 0, then the unique solution is negative, converges to y = 0

as ǫ → 0 on (0, t∗) and escapes from the unstable root y = 0 for

t > t∗.
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The idea of the proof.

As long as y(t, ǫ), ǫ are small, we can approximate

ǫy ′(t, ǫ) = g(y(t, ǫ), t, ǫ) ≈ gy (0, t, 0)y(t, ǫ) (22)

so that

y(t, ǫ) ≈ ẙ e
1
ǫ

t∫

0

gy (0,s,0)ds
.

We have y(t, ǫ) → 0 as ǫ → 0 if the exponent is negative. By

assumption, gy < 0 on ]0, tc [ but then the integral stays negative

on a larger interval, hence t∗ > tc .

However, to make this work, (A5) is needed so that the solution of

the linearized equation (22) is the upper solution.
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