Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Wojciech Niemiro¹

Uniwersytet Warszawski i UMK Toruń

XXX lat IMSM, Warszawa, kwiecień 2017

¹Wspólne prace z Błażejem Miasojedowem, Johnem Noble, Krzysztofem Opalskim.

Plan

Skokowe procesy Markowa Definicja i przykłady Ukryte modele Markowa

Algorytmy MCMC

Reprezentacja trajektorii Algorytm Metropolisa-Hastingsa Algorytm Rao i Teha

Geometryczna ergodyczność

Geometryczna ergodyczność algorytmu Rao i Teha Geometryczna ergodyczność algorytmu Metropolisa-Hastingsa

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Plan

Skokowe procesy Markowa Definicja i przykłady Ukryte modele Markowa

Algorytmy MCMC Reprezentacja trajektorii Algorytm Metropolisa-Hastingsa Algorytm Rao i Teha

Geometryczna ergodyczność

Geometryczna ergodyczność algorytmu Rao i Teha Geometryczna ergodyczność algorytmu Metropolisa-Hastingsa

Plan

Skokowe procesy Markowa Definicja i przykłady Ukryte modele Markowa

Algorytmy MCMC

Reprezentacja trajektorii Algorytm Metropolisa-Hastingsa Algorytm Rao i Teha

Geometryczna ergodyczność

Geometryczna ergodyczność algorytmu Rao i Teha Geometryczna ergodyczność algorytmu Metropolisa-Hastingsa

(ロ) (同) (三) (三) (三) (○) (○)

Skokowe procesy Markowa (czas ciągły, przestrzeń dyskretna)

- X = {X(t), t^{min} ≤ t ≤ t^{max}} jest procesem Markowa na dyskretnej przestrzeni stanów S.
- ► Intensywność przejścia ze stanu $s \in S$ do $s' \neq s$:

$$\lim_{h\to 0}\frac{1}{h}\mathbb{P}\left(X(t+h)=s'|X(t)=s\right)=Q_t(s,s').$$

 $s' \neq s$

- ► Intensywność wyjścia ze stanu: $Q_t(s) = \sum Q_t(s, s')$.
- Proces jest jednorodny jeśli $Q_t = Q$.

Modele reakcji (bio)chemicznych

"Równania reakcji":

- reakcja 1: $A + 2B \rightarrow C$,
- ▶ ...
- reakcja k:
- ▶ Stan procesu: $s = (n_A, n_B, n_C, n_D) \in \{0, 1, ...\}^4$.
- ► Intensywność zachodzenia reakcji Q⁽¹⁾((n_A, n_B, n_C, n_D), (n_A - 1, n_B - 2, n_C + 1, n_D)) zależy od stanu.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Proces jednorodny: $Q = Q^{(1)} + \cdots Q^{(k)}$.

Przykład sieci bayesowskiej z czasem ciągłym (CTBN)

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

Sieci bayesowskie z czasem ciągłym (CTBN)

Graf skierowany $(\mathcal{N}, \mathcal{E})$. Dla $i \in W$, niech pa(i) = {j : i \rightarrow i}. Stan procesu to konfiguracja $s = (s_i)_{i \in W}$, gdzie s_i jest elementem skończonego "alfabetu stanów" wierzchołka *i*.

CTBN jest jednorodnym procesem Markowa z czasem ciągłym na przestrzeni konfiguracji, z macierzą intensywności

$$egin{aligned} Q(s,s') = egin{cases} Q^{(i)}(s_i,s'_i|s_{ extsf{pa}(i)}) & extsf{jessli} \; s_{-i} = s'_{-i} extsf{i} \; s_i
eq s'_i \ & extsf{dla pewnego} \; i; \ & extsf{lla pewnego} \; i; \ & extsf{lla pewnego} \; i; \ & extsf{jessli} \; s_{-i}
eq s'_{-i} extsf{dla wszystkich} \; i, \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日)

dla $s \neq s'$.

Ukryte modele Markowa

- Proces X jest nieobserwowany.
- Obserwujemy zmienną losową Y o rozkładzie prawdopodobieństwa p(Y|X).
- ► <u>Zadanie</u>: obliczyć rozkład *a posteriori p(X|Y)*. Powiedzmy, że znamy *p(X)* i *p(Y|X)*.
- ► Szczególny przypadek: obserwujemy stan procesu w momentach $t^{\min} \leq t_1^{obs} < \cdots < t_k^{obs} \leq t^{\max}$ z błędem losowym. Formalnie, ciąg zmiennych losowych $Y = \{Y_1, \dots, Y_k\}$ taki, że $p(Y|X) = \prod_i p(Y_i|X(t_i^{obs}))$.
- Szczególny przypadek: obserwujemy pewne wierzchołki CTBN, inne są "ukryte".

Ukryte modele Markowa

- Proces X jest nieobserwowany.
- Obserwujemy zmienną losową Y o rozkładzie prawdopodobieństwa p(Y|X).
- ► <u>Zadanie</u>: obliczyć rozkład *a posteriori p(X|Y)*. Powiedzmy, że znamy *p(X)* i *p(Y|X)*.
- ► Szczególny przypadek: obserwujemy stan procesu w momentach $t^{\min} \leq t_1^{\text{obs}} < \cdots < t_k^{\text{obs}} \leq t^{\max}$ z błędem losowym. Formalnie, ciąg zmiennych losowych $Y = \{Y_1, \dots, Y_k\}$ taki, że $p(Y|X) = \prod_i p(Y_i|X(t_i^{\text{obs}}))$.
- Szczególny przypadek: obserwujemy pewne wierzchołki CTBN, inne są "ukryte".

Algorytmy MCMC dla skokowych procesów Markowa

Rozkład *a posteriori* $\pi(X) = p(X|Y)$ jest rozkładem docelowym, *Y* jest ustalone.

Generujemy łańcuch Markowa $X_0, X_1, \ldots, X_m, \ldots$ taki, że $\pi(X)$ jest rozkładem stacjonarnym i $X_m \to \pi$.

Rozkład empiryczny $\hat{\pi}_m = \frac{1}{m} \sum_{j=1}^m \delta_{X_j}$ jest aproksymacją π .

Rozkład π jest miarą probabilistyczną na przestrzeni trajektorii skokowego procesu Markowa, $X_m = (X_m(t) : t^{\min} \leq t \leq t^{\max})$.

"Nadmiarowa" reprezentacja trajektorii

"Nadmiarowa" reprezentacja trajektorii

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

"Nadmiarowa" reprezentacja trajektorii

Time

5 DQC

A B > A B >

Reprezentacja trajektorii

"Nadmiarowa reprezentacja" procesu $X = (X(t) : t^{\min} \leq t \leq t^{\max})$:

- T₁, T₂,..., T_N losowe momenty skoków (być może "wirtualnych").
- $S_0, S_1, ..., S_N$ "szkielet": $S_i = X(T_i)$.
- $X(t) = S_{i-1}$ dla $T_{i-1} \leq t < T_i$.
- T_i jest skokiem wirtualnym jeśli $S_i = S_{i-1}$.

$$X = \begin{pmatrix} t^{\min} & T_1 & \cdots & T_i & \cdots & T_N & t^{\max} \\ S_0 & S_1 & \cdots & S_i & \cdots & S_N \end{pmatrix},$$
gdzie $N = \max\{n : T_n < 1\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

"Uniformizacja"

Niech $\lambda \ge \max_{s} Q(s)$, gdzie $Q(s) = \sum_{s'} Q(s, s')$.

- T₁, T₂,..., T_N jednorodny proces Poissona z intensywnością λ.
- S₀, S₁,..., S_N jednorodny łańcuch Markowa z prawdopodobieństwami przejścia

 $P(s,s') = egin{cases} rac{Q(s,s')}{\lambda} & ext{jeśli } s
eq s' ext{ (Rzeczywisty skok)} \ & \ 1 - rac{Q(s)}{\lambda} & ext{jeśli } s = s' ext{ (Wirtualny skok)} \ . \end{cases}$

Algorytm Metropolisa-Hastingsa

B. Miasojedow, WN, J. Noble, K. Opalski (2014, 2016).

Niech X oznacza nadmiarową reprezentację trajektorii, π jest rozkładem *a posteriori*.

Krok algorytmu MCMC: $X_m = X \rightarrow X' = X_{m+1}$.

Generujemy "propozycję" $X^* \sim q(X, \cdot)$ i akceptujemy ruch $X \rightarrow X'$ z prawdopodobieństwem

$$lpha(\pmb{X},\pmb{X}^*) = \mathbf{1} \wedge rac{\pi(\pmb{X}^*)\pmb{q}(\pmb{X}^*,\pmb{X})}{\pi(\pmb{X})\pmb{q}(\pmb{X},\pmb{X}^*)}.$$

- Jeśli akceptujemy, to $X' = X^*$.
- Jeśli nie, to X' = X.

Prawdopodobieństwo akceptacji jest tak dobrane, że π jest rozkładem stacjonarnym.

Algorytm Metropolisa-Hastingsa

4 typy "ruchów":

ChangeTime: $T_i \rightarrow T'_i$

ChangeState: $S_i \rightarrow S'_i$

RemoveJump/AddJump: $T = (T_1, ..., T_{i-1}, T_i, T_{i+1}, ..., T_N) \leftrightarrow T' = (T_1, ..., T_{i-1}, T_{i+1}, ..., T_N).$

+ odpowiednie prawdopodobieństwa akceptacji.

Algorytm Rao i Teha

V. Rao, Y.W. Teh (2012, 2013).

(T, S) = (J, V, S) = (Rzeczywiste skoki, Wirtualne skoki, Szkielet).

Próbnik Gibbsa:

 $(T,S) = (J, V, S) \rightarrow (J, V', S) = (T', S) \rightarrow (T', S').$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Geometryczna ergodyczność algorytmu Rao-Teha

TWIERDZENIE (B. Miasojedow i WN)

Załóżmy, że macierz intensywności Q jest nieprzywiedlna i $\lambda > \max_s Q(s)$. Wtedy łańcuch X_m generowany przez algorytm Rao i Teha jest geometrycznie ergodyczny. Istnieje stała $\gamma < 1$ i funkcja M takie, że dla każdego X_0 ,

 $\|\boldsymbol{\rho}(\boldsymbol{X}_m|\boldsymbol{X}_0) - \boldsymbol{\pi}(\boldsymbol{X})\|_{TV} \leqslant \gamma^m \boldsymbol{M}(\boldsymbol{X}_0).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Geometryczna ergodyczność algorytmu Metropolisa-Hastingsa

TWIERDZENIE (B. Miasojedow, WN, J. Noble, K. Opalski) Załóżmy dodatkowo, że $\inf_{s \neq s'} Q(s, s') \ge \delta > 0$. Wtedy łańcuch X_m generowany przez algorytm Metropolisa-Hastingsa (skonstruowany przez nas) jest geometrycznie ergodyczny.

Przykład Niech $S = \{0, 1, 2, 3, 4\}, Q(s, s + 1 \mod 5) > 0$ i $Q(s, s - 1 \mod 5) > 0$, pozostałe intensywności = 0. Łańcuch generowany przez algorytm Metropolisa-Hastingsa *nie jest* geometrycznie ergodyczny.

Geometryczna ergodyczność algorytmu Metropolisa-Hastingsa

TWIERDZENIE (B. Miasojedow, WN, J. Noble, K. Opalski) Załóżmy dodatkowo, że $\inf_{s \neq s'} Q(s, s') \ge \delta > 0$. Wtedy łańcuch X_m generowany przez algorytm Metropolisa-Hastingsa (skonstruowany przez nas) jest geometrycznie ergodyczny.

Przykład

Niech $S = \{0, 1, 2, 3, 4\}$, $Q(s, s + 1 \mod 5) > 0$ i $Q(s, s - 1 \mod 5) > 0$, pozostałe intensywności = 0. Łańcuch generowany przez algorytm Metropolisa-Hastingsa *nie jest* geometrycznie ergodyczny.

(ロ) (同) (三) (三) (三) (○) (○)

- V. Rao, Y. W. Teh. MCMC for continuous-time discrete-state systems. In Advances in Neural Information Processing Systems, 701–709, 2012.
- V. Rao, Y. W. Teh. Fast MCMC sampling for Markov jump processes and extensions. *Journal of Machine Learning Research*, 14, 3207–3232, 2013.
- B. Miasojedow, W. Niemiro, J. Noble, K. Opalski. Metropolis-type algorithms for Continuous Time Bayesian Networks. arXiv:1403.4035v1.
- B. Miasojedow, W. Niemiro. Geometric ergodicity of Rao and Teh's algorithm for homogeneous Markov jump processes. *Statistics and Probability Letters* 113, 1–6, 2016.

(ロ) (同) (三) (三) (三) (○) (○)